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Three different topological structures built on the basis of a graphene lattice are investi-
gated. Clusters of the (3,6) type homeomorphic with the sphere, toroidal, and cylindrical
carbon nanotubes are shown to have the same dispersion relation, inherited from the
planar graphene lattice. The persistent currents in axially symmetric structures, their
dependence on the size and geometry of the molecule, are also discussed.
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1. INTRODUCTION

Since the discovery of fullerenes and carbon nanotubes (Ijima, 1991; Krato
et al., 1985) there has been an ongoing experimental and theoretical effort (e.g.,
Dresselhauset al., 2001; Fowleret al., 2000; Gonzalezet al., 1993) to under-
stand their electronic and magnetic properties. Our approach to this problem is
to exploit the information given by the topology of various carbon clusters to de-
rive their energy spectra, which determine the cluster’s electronic and magnetic
properties.

By applying different boundary conditions to the graphene planes, one can
form different convex ployhedral structures, such as tetrahedral cages (regular and
irregular), carbon tori, and nanotubes. The momentum distributions thus obtained
differ according to the topology of the cage.

When the tori or carbon nanotubes are inserted into an external static mag-
netic field parallel to their cylindrical symmetry axis, and as a result persistent
nondissipative currents (Cheunget al., 1988) run along the circumference of the
structure. These currents are one of the manifestations of quantum coherence.

Using this particular approach we illustrate the role played by topology in
such quantum systems.

1 To whom correspondence should be addressed at. . . ; e-mail: szopa@plktusll.bitnet.
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2. THE CLASSIFICATION OF CONVEX TRIVALENT CAGES

Let us consider a molecule consisting of a set of atoms forming a trivalent
and convex polyhedral cage. The trivalent means that each atom is bound to its
three nearest neighbors. The simplest possible cage of that type is the set of four
atoms in vertices of a tetrahedron. The topological theorem useful for classifying
all possible cages of that type is the Euler–Poincar´e theorem, which for convex
(and therefore homeomorphic with the sphere) cages reads as follows.

Theorem 2.1. (Euler–Poincaŕe). For any polyhedron P:

V − E + F = 2, (1)

where V is the number of vertices, E – the number of edges, and F – the number
of faces of the polyhedron.

For our trivalent lattice, the number of edgesE = 3V/2 (because each edge
belongs to two vertices) and, therofore,F = 2+ V/2. Assuming that we havenl ,
l -gonal faces the total number of faces and vertices are respectively:

F =
∑

l

nl and V = 1

3

∑
l

lnl , (2)

where summation goes over all types ofl -gonal faces. The Euler–Poincar´e theorem
yields then the following rule that must hold for any trivalent and convex cage
(Szopa, 2001) ∑

l

nl

(
1− l

6

)
= 2. (3)

The same rule can be obtained from the geometrical Gauss–Bonnet theorem,
which states ∑

l

nlγl = 4π, (4)

whereγl is the vertex defect connected with thel -gonal face of the polyhedron. Let
us start our consideration from a trivalent hexagonal lattice. Such a lattice is flat
and has no vertex defects. In order to build a polyhedron we must introduce to it
some curvature. By removing of a number ofπ

3 angles from the hexagonal lattice
(see Fig. 1) and obtaining in this way anl-gonal face (in the centre of figure), the
introduced curvature is

γl = (6− l )
π

3
, l = 1, 2, 3. . . (5)

For l = 3, 4, 5, 7 the hexagonal face is replaced by anl -gon (triangle, square,
pentagon, heptagon. . .). Subtituting (5) into the Gauss–Bonnet formula one again
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Fig. 1. The removal of the area inside the angleγ introduces
the conical singularity.

gets the rule (3). As we can see, the number of hexagonal faces is, according to this
rule arbitrary whereas the other types of faces must add up to the total curvature
4π . We will consider cages that are built only of hexagons and other types of
l -gons with l < 6, therefore, we omit the cages containing, e.g., heptagons or
otherl -gons withl > 6, which introduce negative curvature. Such cages can also
have spherical topology but are not convex. Note also that the cages having “faces”
with l = 2, 1 are also conceivable. The faces are in these cases reduced to a single
edge or even a vertex. The overview of these “regular” cages with the topology of
a sphere is listed in the table ahead.

3. TETRAHEDRALLY SYMMETRIC (3,6) CAGES

One of the possible types of convex hexagonal cages are those containing
only hexagonal and triangular faces. These cages, according to the Euler–Poincar´e
theorem, must contain exactly four triangular faces (cf. Fig. 2). The general theory
will be presented at the end of this chapter, but now, for simplicity we start our
considerations from tetrahedrally symmetric cages of that type. Such a cage can
be created, geometrically, by adequate gluing of the edges of a triangular patch,
like the one presented in Fig. 3. It is fully defined by one of the edge vectors, e.g.,
A, since the remaining two must lie atπ/3 angles to the first one.

A = 2mT1+ 2nT2,

B = 2(m+ n)T2− 2nT1, (6)

wherem andn are integers. A folded tetrahedron would look like the molecule on
Fig. 4. The number of nodes, or lattice sites, in the cage is

N = 4(m2+ n2+mn). (7)

The first Brillouin zone is generated by

P1 = 2π√
3

ex − 2π

3
ey, P2 = 4π

3
ey. (8)
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Fig. 2. Classification of trivalent cages of genus 0.

Knowing this, we shall now show how to determine the electron wave function on
the tetrahedron, using the covering function.

The simplest way of obtaining the wave functions of the tetrahedral cage is
the adaptation of the wave functions of graphene and choosing only those which
obey the boundary conditions characteristic for the cage, which are

ψ(tA) = ψ(A − tA),

ψ(tB) = ψ(B− tB),

ψ(A + t(B− A)) = ψ(B+ t(A − B)),

n · ∇ψ(tA) = −n · ∇ψ(A − tA),

n · ∇ψ(tB) = −n · ∇ψ(B− tB),

n · ∇ψ(A + t(B− A)) = n · ∇ψ(B+ t(A − B)), (9)
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Fig. 3. The tetrahedron unfolded on the honeycomb plane.

where 0≤ t < 1/2. To obtain a function obeying the conditions (9) we construct
a global wave function, defined on the whole graphene lattice, which is periodic
in two period vectorsA andB:

9(r ) = 9(r + i A + j B), (10)

wherei , j are integers. In addition this wave function should be invariant under
the inversion:

9(r ) = 9(−r ). (11)

One can show (Ceulemanset al., 2002) that any function obeying (10) and (11),
when restricted to the triangleOABautomatically obeys (9), and therefore

9|O AB(r ) = ψ(r ). (12)

In this way we can find arbitrary wave functions of the cluster. The wave functions
of graphene are of the type (Ceulemanset al., 2002):

|yµk〉 = c(1)
µk|k〉1+ c(2)

µk|k〉2, (13)

Fig. 4. An example of a tetrahedral cage.
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Fig. 5. The Brillouin zone of graphene, with its four
special points —0 corresponding to theE = −3γ
singlet state,M1, M2, andM3 to theE = γ triplet
states.

where

|k〉1 = 1√
N

∑
p

exp(ispr p · k)a†p|0〉,

|k〉2 = 1√
N

∑
p

exp(−ispr p · k)a†p|0〉, (14)

µ = 1, 2 is the band index,sp = 1 for black andsp = −1 for blanc atoms. The
periodicity condition (10) is satisfied provided

k · A = 2π l1,

k · B = 2π l2. (15)

The allowed momentum vectors2 read:

kx = 4π√
3aN

[(m+ n)l1− nl2],

ky = 4π

3aN
[(n−m)l1+ (2m+ n)l2]. (16)

The energy spectrum for the tetrahedral cage is now easily obtained by inserting
these vectors into the graphene dispersion relation. It has been shown (Dresselhaus
et al., 2001) that for carbon structures of not very large curvature the use of planar
dispersion relation is well justified.

The eigenvalues of the two bandsµ = 1, 2 are

Eµk = α + (−1)µγ

(
1+ 4 cos2

√
3

2
kx + 4 cos

√
3

2
kx cos

3

2
ky

)1/2

. (17)

2 Since the wave vectors are proportional to the momentum, we shall refer tok as the momentum vector.
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Fig. 6. The plot of the dispersion relation (Eq. (17)) for the graphene lattice.

The allowed values of momenta change depending onm andn (cf. Fig. 7).
There are only four states in the first Brillouin zone, which are always allowed,
independently ofm andn; they areΓ, M1, M2, andM3 (cf. Fig. 3). The pointΓ
corresponds to the lowest energy,−3γ and theM points to energyγ .

Apart from that, the spectrum is bipartite and symmertical with respect to
E = 0. The wave vectors and resulting energy spectra for carbon tetrahedra of
various edge vectors are shown on Fig. 7. Note that the spectra of both (4, 1) and
(4, 4) tetrahedra include states at the Fermi level (E = 0), while the other do not.
The presence of occupied states at the Fermi surface is a feature of all tetrahedra
whose edge vectors satisfy the condition (n−m)|mod3 = 0, which we shall refer
to as the metallicity condition. The construction above can be generalised to an
arbitrary (3,6) cage. It is defined by four integer parametersm, n, p, andq, for the
edge vectors, obeying the conditionmq− pn 6= 0. The patch generating vectors
are

A = 2mT1+ 2nT2,

B = 2pT1+ 2qT2. (18)

The procedure of obtaining the wave function of the cage from the graphene wave
functions can be now applied, giving the following momentum vectors:

kx = π√
3a

ql1+ nl2
mq− pn

,

ky = π√
3a

−(2p+ q)l1+ (2m+ n)l2
mq− pn

. (19)

The allowed states in the reciprocal space display a symmetry lower than the one
of the tetrahedron—they form a triangular lattice, but they are not equidistant, and
the energy spectrum is not bipartite.
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Fig. 7. The left column of plots represents the Brillouin zones of tetrahedra
of various chiralities (the exact parameters are indicated at the far right). The
right column shows their density of states plots.

Equations (19) and (17) fully determine the electronic properties of arbitrary
(3, 6) cages. Figure 8 shows the patch of an arbitrary nontetrahedrally symmetrical
(3,6) cage, Fig. 9 its first Brillouin zone and the energy spectrum.
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Fig. 8. The patch of a (3,6) cage, defined by parametersm= 3, n = 2, p = −1, q = 4.

4. PERSISTENT CURRENTS IN TOROIDAL GRAPHENE CAGES

The construction of a torus from a graphene patch is fully analogous to the
construction of the tetrahedron, or a (3,6) cage. We can define again the two
structural vectors,Ln = m1T1+m2T2, which stands for the circumference of a
nanotube created after the first gluing, andL t = p1T1+ p2T2, standing for the
length of this tube — which, upon the second gluing, becomes the circumference
of the torus (we will call it simply the length of the torus). These two vectors do
not have to be perpendicular. If they aren’t, we have a twisted torus. When we
insert the torus into an external magnetic field, parallel to the axis of the torus,
the Aharonov–Bohm effect induces a shift in the phase of electronic states. This
would be difficult to obtain analytically in the case of a tetrahedral cage but can
be easily incorporated into the boundary conditions of a structure with rotational

Fig. 9. Left: the Brillouin zone of a (3,2,–1,4) cage, note that
points representing allowed momenta are not equidistant, contrary
to the tetrahedron case. Right: density of states plot.
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symmetry (Lin and Chuu, 1998).

k · Ln = 2π ln,

k · L t = 2π (l t + φ/φ0), φ0 = hc

e
(20)

whereln andl t are arbitrary integers, which results in the following equations for
x andy momentum coordinates:

kx = 2π√
3(m1 p2− p1m2)

(p2ln +m2(l t + φ/φ0)),

ky = 2π

3(m1 p2− p1m2)
(−(2p1+ p2)ln + (2m1+m2)(l t + φ/φ0)). (21)

Each of these allowed momentum states carries an electric current. Without the
magnetic field the currents cancel out because of the Kramers degeneracy. When
the magnetic field is switched on, the momentum coordinate along the torus (kt =
k · L t/|L t |) is modified. The currents don’t cancel out any more and we obtain
an overall topological current along the torus’s circumference, called persistent
because it runs without dissipation, as long as the magnetic field is present. This is
a phenomenon common in systems of mesoscopic size, where the phase coherence
length is of the same order of magnitude

5. FERMI LEVEL DEPENDENT CURRENTS IN CARBON NANOTUBES

The straight nanotubes, threaded by a magnetic flux, are more favourable
for topological currents, since in their case some of the features that suppressed
persistent currents in tori, are acting now in their favour. The magnetic field is
applied along the axis of the tube, shifting states in the perpendicular direction.
Since the states are more sparse in the direction in which they are shifted, the slope
of the current is greater and the amplitude increases. Since the states are very dense
along the axis of the tube, a large number of them corresponds to the same value ofkt

and they are shifted together, thereby increasing the amplitude of the current again.
In zigzag nanotubes we can enhance the persistent currents even more, by

lowering the Fermi level, i.e., hole-doping the tube. Thekt = const lines are then
exactly parallel to two sides of the Fermi surface (cf. Fig. 11) and the jump in the
current is very large (cf. Fig. 12). As regards armchair nanotubes, the persistent
currents decrease a few times with lowering the Fermi level to−γ (Fig. 13), since
the currents carried by states belonging to one momentum line are not correlated
now. With these three modifications, the currents in hole-doped zigzag nanotubes
can be much larger than in zigzag tori. They can attain values that would per-
mit the existence of selfsustaining currents, however, this is a subject for further
investigation.
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Fig. 12. The persistent current inI0 = γe/h units versus magnetic flux inφ0 = hc/e units. Left:
total persistent current in the (14, 0)× (−100, 200) nanotube at the half-filling; right: in hole-doped
to the value ofEF = −γ .

6. CONCLUSIONS

Three different topological structures have been discussed by the use of a
method of projecting a finite cluster onto the infinite space of a graphen lattice.
The energy spectra for convex polyhedral cages, carbon tori, and carbon nanotubes
were obtained by inserting the wave vectors obeying the appropriate boundary con-
ditions, determined by the topology of the structure, into the graphene dispersion
relation. We obtained the analytical energy spectra for all investigated systems,
and in the case of tori and nanotubes, which have cylindrical symmetry, we could
also examine their magnetic properties. The modification of wave vectors by the
external magnetic flux results in persistent currents that are a hallmark of phase co-
herence. These currents strongly depend on the size of the systems and the details
of their geometrical structure. We have shown that the amplitude of the currents
is inversely proportional to the diameter of the system. The systems obeying the
metallicity condition exhibit much larger currents (even by several orders of mag-
nitude) than semiconducting systems of similar size. The twist of the nanotube
forming a torus does not significantly influence the current.

Fig. 13. Left: the persistent current in a half-filled armchair nanotube, (9, 9)× (−150, 150). Right:
the same nanotube, but Fermi level lowered to−γ .
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